Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: covidwho-20243230

RESUMEN

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19 , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico , Humanos , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Manejo de Especímenes
2.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1528169

RESUMEN

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

3.
Clin Infect Dis ; 73(5): 802-807, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1085351

RESUMEN

BACKGROUND: Although multiple respiratory viruses circulate in humans, few studies have compared the incidence of different viruses across the life course. We estimated the incidence of outpatient illness due to 12 different viruses during November 2018 through April 2019 in a fully enumerated population. METHODS: We conducted active surveillance for ambulatory care visits for acute respiratory illness (ARI) among members of Kaiser Permanente Washington (KPWA). Enrolled patients provided respiratory swab specimens which were tested for 12 respiratory viruses using reverse transcription polymerase chain reaction (RT-PCR). We estimated the cumulative incidence of infection due to each virus overall and by age group. RESULTS: The KPWA population under surveillance included 202 562 individuals, of whom 2767 (1.4%) were enrolled in the study. Influenza A(H3N2) was the most commonly detected virus, with an overall incidence of 21 medically attended illnesses per 1000 population; the next most common viruses were influenza A(H1N1) (18 per 1000), coronaviruses (13 per 1000), respiratory syncytial virus (RSV, 13 per 1000), and rhinovirus (9 per 1000). RSV was the most common cause of medically attended ARI among children aged 1-4 years; coronaviruses were the most common among adults aged ≥65 years. CONCLUSIONS: Consistent with other studies focused on single viruses, we found that influenza and RSV were major causes of acute respiratory illness in persons of all ages. In comparison, coronaviruses and rhinovirus were also important pathogens. Prior to the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronaviruses were the second-most common cause of medically attended ARI during the 2018/19 influenza season.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Adulto , Niño , Humanos , Incidencia , Lactante , Subtipo H3N2 del Virus de la Influenza A , Gripe Humana/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , SARS-CoV-2 , Estaciones del Año
4.
Science ; 370(6516): 571-575, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: covidwho-760213

RESUMEN

After its emergence in Wuhan, China, in late November or early December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus rapidly spread globally. Genome sequencing of SARS-CoV-2 allows the reconstruction of its transmission history, although this is contingent on sampling. We analyzed 453 SARS-CoV-2 genomes collected between 20 February and 15 March 2020 from infected patients in Washington state in the United States. We find that most SARS-CoV-2 infections sampled during this time derive from a single introduction in late January or early February 2020, which subsequently spread locally before active community surveillance was implemented.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Genoma Viral , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Teorema de Bayes , COVID-19 , Humanos , Funciones de Verosimilitud , Pandemias , Filogenia , SARS-CoV-2 , Washingtón/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA